
ERLANGEN REGIONAL
COMPUTING CENTER

Single Instruction Multiple Data
(SIMD) processing

2

A word on terminology
 SIMD == “one instruction  several operations”
 “SIMD width” == number of operands that fit into a register
 No statement about parallelism among those operations
 Original vector computers: long registers, pipelined execution, but no

parallelism (within the instruction)

Today
 x86: most SIMD instructions fully parallel
 “Short Vector SIMD”
 Some exceptions on some archs (e.g., vdivpd)

 NEC Tsubasa: 32-way parallelism but
SIMD width = 256 (DP)

SIMD terminology

A[
0]

A[
1]

A[
2]

A[
3]

B[
0]

B[
1]

B[
2]

B[
3]

C[
0]

C[
1]

C[
2]

C[
3]

+

+

+

+

R0 R1 R2

SIMD

3

Scalar execution units

for (int j=0; j<size; j++){
A[j] = B[j] + C[j];

}

Scalar execution

Register widths
• 1 operand

• 2 operands (SSE)

• 4 operands (AVX)

• 8 operands (AVX512)

= +

SIMD

4

Data-parallel execution units (short vector SIMD)
Single Instruction Multiple Data (SIMD)

for (int j=0; j<size; j++){
A[j] = B[j] + C[j];

}

Register widths
• 1 operand

• 2 operands (SSE)

• 4 operands (AVX)

• 8 operands (AVX512)

SIMD execution

= +

SIMD

5

Example: Data types in 32-byte SIMD registers (AVX[2])

 Supported data types depend on actual SIMD instruction set
Scalar slot

SIMD

6

In-core features are driving peak performance

SSE2

AVX

AVX512

FMA

SIMD

7SIMD

Von Neumann bottleneck reloaded: “DRAM gap”
DP peak performance and peak main memory bandwidth
for a single Intel processor (chip) – without SIMD and FMA

SIMD

The Basics

9

SIMD processing – Basics
Steps (done by the compiler) for “SIMD processing”

for(int i=0; i<n;i++)
C[i]=A[i]+B[i];

for(int i=0; i<n;i+=4){
C[i] =A[i] +B[i];
C[i+1]=A[i+1]+B[i+1];
C[i+2]=A[i+2]+B[i+2];
C[i+3]=A[i+3]+B[i+3];}

//remainder loop handling

LABEL1:
VLOAD R0  A[i]
VLOAD R1  B[i]
V64ADD[R0,R1]  R2
VSTORE R2  C[i]
ii+4
i<(n-4)? JMP LABEL1

//remainder loop handling

“Loop unrolling”

Load 256 Bits starting from address of A[i] to
register R0

Add the corresponding 64 Bit entries in R0 and
R1 and store the 4 results to R2

Store R2 (256 Bit) to address
starting at C[i]

This
should
not be
done
by
hand!

SIMD

10

SIMD processing: roadblocks

No SIMD vectorization for loops with data dependencies:

“Pointer aliasing” may prevent SIMDfication

C/C++ allows that A  &C[-1] and B  &C[-2]
 C[i] = C[i-1] + C[i-2]: dependency  No SIMD
If “pointer aliasing” is not used, tell the compiler:
–fno-alias (Intel), -Msafeptr (PGI), -fargument-noalias (gcc)
restrict keyword (C only!):

for(int i=0; i<n;i++)
A[i]=A[i-1]*s;

void f(double *A, double *B, double *C, int n) {
for(int i=0; i<n; ++i)

C[i] = A[i] + B[i];
}

void f(double *restrict A, double *restrict B, double *restrict C, int n) {…}

SIMD

11

Options:
 The compiler does it for you (but: aliasing, alignment, language,

abstractions)
 Compiler directives (pragmas)
 Alternative programming models for compute kernels (OpenCL, ispc)
 Intrinsics (restricted to C/C++)
 Implement directly in assembler

To use intrinsics the following headers are available:
 xmmintrin.h (SSE)
 pmmintrin.h (SSE2)
 immintrin.h (AVX)

 x86intrin.h (all extensions)

How to leverage SIMD: your options

for (int j=0; j<size; j+=16){
t0 = _mm_loadu_ps(data+j);
t1 = _mm_loadu_ps(data+j+4);
t2 = _mm_loadu_ps(data+j+8);
t3 = _mm_loadu_ps(data+j+12);
sum0 = _mm_add_ps(sum0, t0);
sum1 = _mm_add_ps(sum1, t1);
sum2 = _mm_add_ps(sum2, t2);
sum3 = _mm_add_ps(sum3, t3);

}

SIMD

12

Vectorization compiler options (Intel)

 The compiler will vectorize starting with –O2.
 To enable specific SIMD extensions use the –x option:
 -xSSE2 vectorize for SSE2 capable machines
Available SIMD extensions:
SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, ...

 -xAVX on Sandy/Ivy Bridge processors
 -xCORE-AVX2 on Haswell/Broadwell
 -xCORE-AVX512 on Skylake (certain models)
 -xMIC-AVX512 on Xeon Phi Knights Landing

Recommended option:
 -xHost will optimize for the architecture you compile on

(Caveat: do not use on standalone KNL, use MIC-AVX512)
 To really enable 512-bit SIMD with current Intel compilers you need to set:
-qopt-zmm-usage=high

SIMD

15

User-mandated vectorization (OpenMP 4)

 Since OpenMP 4.0 SIMD features are a part of the OpenMP standard
 #pragma omp simd enforces vectorization
 Essentially a standardized “go ahead, no dependencies here!”
 Do not lie to the compiler here!

 Prerequesites:
 Countable loop
 Innermost loop
 Must conform to for-loop style of OpenMP worksharing constructs

 There are additional clauses:
reduction, vectorlength, private, collapse, ...

for (int j=0; j<n; j++) {
#pragma omp simd reduction(+:b[j:1])
for (int i=0; i<n; i++) {

b[j] += a[j][i];
}

}

SIMD

16

x86 Architecture:
SIMD and Alignment
 Alignment issues
 Alignment of arrays should optimally be on SIMD-width address boundaries

to allow packed aligned loads (and NT stores on x86)
 Otherwise the compiler will revert to unaligned loads/stores
 Modern x86 CPUs have less (not zero) impact for misaligned

LOAD/STORE, but Xeon Phi KNC relies heavily on it!
 How is manual alignment accomplished?

 Stack variables: alignas keyword (C++11/C11)
 Dynamic allocation of aligned memory (align = alignment boundary)
 C before C11 and C++ before C++17:
posix_memalign(void **ptr, size_t align, size_t size);

 C11 and C++17:
aligned_alloc(size_t align, size_t size);

SIMD

SIMD

Reading Assembly Language

(Don’t Panic)

18

Assembler: Why and how?

Why check the assembly code?
 Sometimes the only way to make sure the compiler “did the right thing”
 Example: “LOOP WAS VECTORIZED” message is printed, but Loads &

Stores may still be scalar!
 Get the assembler code (Intel compiler):
icc –S –O3 -xHost triad.c -o a.out

 Disassemble Executable:
objdump –d ./a.out | less

The x86 ISA is documented in:
Intel Software Development Manual (SDM) 2A and 2B
AMD64 Architecture Programmer's Manual Vol. 1-5

SIMD

19

Basics of the x86-64 ISA

 Instructions have 0 to 3 operands (4 with AVX-512)
 Operands can be registers, memory references or immediates
 Opcodes (binary representation of instructions) vary from 1 to 15 (?) bytes
 There are two assembler syntax forms: Intel (left) and AT&T (right)
 Addressing Mode: BASE + INDEX * SCALE + DISPLACEMENT
 C: A[i] equivalent to *(A+i) (a pointer has a type: A+i*8)

movaps [rdi + rax*8+48], xmm3
add rax, 8
js 1b

401b9f: 0f 29 5c c7 30 movaps %xmm3,0x30(%rdi,%rax,8)
401ba4: 48 83 c0 08 addq $0x8,%rax
401ba8: 78 a6 js 401b50 <triad_asm+0x4b>

movaps %xmm3, 48(%rdi,%rax,8)
addq $8, %rax
js ..B1.4

SIMD

Intel syntax AT&T syntax

20

Basics of the x86-64 ISA with extensions

16 general Purpose Registers (64bit):
rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp, r8-r15
alias with eight 32 bit register set:
eax, ebx, ecx, edx, esi, edi, esp, ebp
8 opmask registers (16bit or 64bit, AVX512 only):
k0–k7
Floating Point SIMD Registers:
xmm0-xmm15 (xmm31) SSE (128bit) alias with 256-bit and 512-bit registers
ymm0-ymm15 (xmm31) AVX (256bit) alias with 512-bit registers
zmm0-zmm31 AVX-512 (512bit)

SIMD instructions are distinguished by:
VEX/EVEX prefix: v
Operation: mul, add, mov
Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h)
Width: scalar (s), packed (p)
Data type: single (s), double (d)

SIMD

21

Example for masked execution

Masking for predication is very helpful in cases such as e.g.
remainder loop handling or conditional handling.

SIMD

22

ISA support on Intel chips

The current Skylake architecture supports all legacy ISA extensions:
MMX, SSE, AVX, AVX2

Furthermore KNL supports:
 AVX-512 Foundation (F), KNL and Skylake
 AVX-512 Conflict Detection Instructions (CD), KNL and Skylake
 AVX-512 Exponential and Reciprocal Instructions (ER), KNL
 AVX-512 Prefetch Instructions (PF), KNL

AVX-512 extensions only supported on Skylake:
 AVX-512 Byte and Word Instructions (BW)
 AVX-512 Doubleword and Quadword Instructions (DQ)
 AVX-512 Vector Length Extensions (VL)

ISA Documentation:
Intel Architecture Instruction Set Extensions Programming Reference

SIMD

23

Case Study: Sum reduction (double precision)

double sum = 0.0;

for (int i=0; i<size; i++){
sum += data[i];

}

Assembly code w/ -O1 (Intel syntax, Intel compiler):
.label:

addsd xmm0,[rdi + rax * 8]
inc rax
cmp rax, rsi
jl .label

To get object code use objdump
–d on object file or executable or
compile with -S

AT&T syntax:
addsd 0(%rdi,%rax,8),%xmm0

SIMD

24

Sum reduction (double precision) – AVX512 version

Assembly code w/ -O3 -xCORE-AVX512 -qopt-zmm-usage=high :

.label:
vaddpd zmm1, zmm1, [rdi+rcx*8]
vaddpd zmm4, zmm4, [64+rdi+rcx*8]
vaddpd zmm3, zmm3, [128+rdi+rcx*8]
vaddpd zmm2, zmm2, [192+rdi+rcx*8]
add rcx, 32
cmp rcx, rdx
jb .label

;
vaddpd zmm1, zmm1, zmm4
vaddpd zmm2, zmm3, zmm2
vaddpd zmm1, zmm1, zmm2

; [… SNIP …]
vshuff32x4 zmm2, zmm1, zmm1, 238
vaddpd zmm1, zmm2, zmm1
vpermpd zmm3, zmm1, 78
vaddpd zmm4, zmm1, zmm3
vpermpd zmm5, zmm4, 177
vaddpd zmm6, zmm4, zmm5
vaddsd xmm0, xmm6, xmm0

SIMD

Bulk loop code
(8x4-way unrolled)

Remainder omitted

Sum up 32
partial sums into
xmm0.0

25

Sum reduction (double precision) – sequential performance

SIMD is an in-core performance feature! If the bottleneck is data transfer,
its benefit is limited.

SIMD

Xeon “Broadwell” E5-2697v4 Xeon Phi 7210

26

SIMD with masking

SIMD

double sum = 0.0;

for (int i=0; i<size; i++){
if(data[i]>0.0)
sum += data[i];

}
.label:

vmovups (%r12,%rsi,8), %zmm5
vmovups 64(%r12,%rsi,8), %zmm6
vmovups 128(%r12,%rsi,8), %zmm7
vmovups 192(%r12,%rsi,8), %zmm8
vcmpgtpd %zmm4, %zmm5, %k1
vcmpgtpd %zmm4, %zmm6, %k2
vcmpgtpd %zmm4, %zmm7, %k3
vcmpgtpd %zmm4, %zmm8, %k4
vaddpd %zmm5, %zmm0, %zmm0{%k1}
vaddpd %zmm6, %zmm3, %zmm3{%k2}
vaddpd %zmm7, %zmm2, %zmm2{%k3}
vaddpd %zmm8, %zmm1, %zmm1{%k4}
addq $32, %rsi
cmpq %rdx, %rsi
jb .label

Bulk loop code
(8x4-way unrolled)

SIMD mask
generation

masked SIMD
ADDs
(accumulates)

34

Rules and guidelines for vectorizable loops

1. Inner loop
2. Countable (loop length can be determined at loop entry)
3. Single entry and single exit
4. Straight line code (no conditionals) – unless masks can be used
5. No (unresolvable) read-after-write data dependencies
6. No function calls (exception intrinsic math functions)

Better performance with:
1. Simple inner loops with unit stride (contiguous data access)
2. Minimize indirect addressing
3. Align data structures to SIMD width boundary (minor impact)

In C use the restrict keyword and/or const qualifiers and/or
compiler options to rule out array/pointer aliasing

SIMD

Efficient parallel programming
on ccNUMA nodes

Performance characteristics of ccNUMA nodes
First touch placement policy

36(c) RRZE 2019 ccNUMA

ccNUMA performance problems
“The other affinity” to care about

 ccNUMA:
 Whole memory is transparently accessible by all processors
 but physically distributed across multiple locality domains (LDs)
 with varying bandwidth and latency
 and potential contention (shared memory paths)

 How do we make sure that memory access is always as "local" and
"distributed" as possible?

Note: Page placement is implemented in units of OS pages (often 4kB,
possibly more)

37

How much bandwidth does nonlocal access cost?

(c) RRZE 2019 ccNUMA

Example: AMD “Epyc” 2-socket system (8
chips, 2 sockets, 48 cores): STREAM Triad
bandwidth measurements [Gbyte/s]

So
ck

et
 0

So
ck

et
 1

0 1 2 3 4 5 6 7

0 32.4 21.4 21.8 21.9 10.6 10.6 10.7 10.8

1 21.5 32.4 21.9 21.9 10.6 10.5 10.7 10.6

2 21.8 21.9 32.4 21.5 10.6 10.6 10.8 10.7

3 21.9 21.9 21.5 32.4 10.6 10.6 10.6 10.7

4 10.6 10.7 10.6 10.6 32.4 21.4 21.9 21.9

5 10.6 10.6 10.6 10.6 21.4 32.4 21.9 21.9

6 10.6 10.7 10.6 10.6 21.9 21.9 32.3 21.4

7 10.7 10.6 10.6 10.6 21.9 21.9 21.4 32.5

CPU node
MEM node

38(c) RRZE 2019 ccNUMA

numactl as a simple ccNUMA locality tool :
How do we enforce some locality of access?
 numactl can influence the way a binary maps its memory pages:

numactl --membind=<nodes> a.out # map pages only on <nodes>
--preferred=<node> a.out # map pages on <node>

and others if <node> is full
--interleave=<nodes> a.out # map pages round robin across

all <nodes>

 Examples:

for m in `seq 0 7`; do
for c in `seq 0 7`; do

env OMP_NUM_THREADS=6 \
numactl --membind=$m likwid-pin –c M${c}:0-5 ./stream

done
done

numactl --interleave=0-7 likwid-pin -c E:N:8:1:12 ./stream

 But what is the default without numactl?

ccNUMA map scan
for EPYC system

39(c) RRZE 2019 ccNUMA

ccNUMA default memory locality
 "Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the
processor that first touches it!

 Except if there is not enough local memory available
 This might be a problem, see later

 Caveat: “to touch" means “to write", not “to allocate"
 Example:

double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++) // or i+=PAGE_SIZE/sizeof(double)
huge[i] = 0.0;

 It is sufficient to touch a single item to map the entire page

Memory not
mapped here yet

Mapping takes
place here

40(c) RRZE 2019 ccNUMA

Coding for ccNUMA data locality

integer,parameter :: N=10000000
double precision A(N), B(N)

A=0.d0

!$OMP parallel do
do i = 1, N

B(i) = function (A(i))
end do
!$OMP end parallel do

integer,parameter :: N=10000000
double precision A(N),B(N)
!$OMP parallel
!$OMP do schedule(static)
do i = 1, N

A(i)=0.d0
end do
!$OMP end do
...
!$OMP do schedule(static)
do i = 1, N

B(i) = function (A(i))
end do
!$OMP end do
!$OMP end parallel

Most simple case: explicit initialization

41(c) RRZE 2019 ccNUMA

Coding for ccNUMA data locality

integer,parameter :: N=10000000
double precision A(N), B(N)

READ(1000) A

!$OMP parallel do
do i = 1, N

B(i) = function (A(i))
end do
!$OMP end parallel do

integer,parameter :: N=10000000
double precision A(N),B(N)
!$OMP parallel
!$OMP do schedule(static)
do i = 1, N

A(i)=0.d0
end do
!$OMP end do
!$OMP single
READ(1000) A
!$OMP end single
!$OMP do schedule(static)
do i = 1, N

B(i) = function (A(i))
end do
!$OMP end do
!$OMP end parallel

Sometimes initialization is not so obvious: I/O cannot be easily
parallelized, so “localize” arrays before I/O

42(c) RRZE 2019 ccNUMA

Coding for Data Locality
 Required condition: OpenMP loop schedule of initialization must be the

same as in all computational loops
 Only choice: static! Specify explicitly on all NUMA-sensitive loops, just to

be sure…
 Imposes some constraints on possible optimizations (e.g. load balancing)
 Presupposes that all worksharing loops with the same loop length have the

same thread-chunk mapping
 If dynamic scheduling/tasking is unavoidable, the problem cannot be solved

completely if a team of threads spans more than one LD
 Static parallel first touch is still a good idea
 OpenMP 5.0 will have rudimentary memory affinity functionality

 How about global objects?
 If communication vs. computation is favorable, might consider properly

placed copies of global data
 C++: Arrays of objects and std::vector<> are by default initialized

sequentially
 STL allocators provide an elegant solution

46(c) RRZE 2019 ccNUMA

Diagnosing bad locality
 If your code is cache bound, you might not notice any locality problems

 Otherwise, bad locality limits scalability
(whenever a ccNUMA node boundary is crossed)
 Just an indication, not a proof yet

 Running with numactl --interleave might give you a hint
 See later

 Consider using performance counters
 LIKWID-perfctr can be used to measure nonlocal memory accesses
 Example for Intel dual-socket system (IvyBridge, 2x10-core):

likwid-perfctr -g NUMA –C M0:0-4@M1:0-4 ./a.out

47(c) RRZE 2019 ccNUMA

Using performance counters for diagnosing bad ccNUMA
access locality
 Intel Ivy Bridge EP node (running 2x5 threads):

measure NUMA traffic per core

 Summary output:

 Caveat: NUMA metrics vary
strongly between CPU models

+--------------------------------------+--------------+-------------+-------------+--------------+
| Metric | Sum | Min | Max | Avg |
+--------------------------------------+--------------+-------------+-------------+--------------+
Runtime (RDTSC) [s] STAT	4.050483	0.4050483	0.4050483	0.4050483
Runtime unhalted [s] STAT	3.03537	0.3026072	0.3043367	0.303537
Clock [MHz] STAT	32996.94	3299.692	3299.696	3299.694
CPI STAT	40.3212	3.702072	4.244213	4.03212
Local DRAM data volume [GByte] STAT	7.752933632	0.735579264	0.823551488	0.7752933632
Local DRAM bandwidth [MByte/s] STAT	19140.761	1816.028	2033.218	1914.0761
Remote DRAM data volume [GByte] STAT	9.16628352	0.86682464	0.957811776	0.916628352
Remote DRAM bandwidth [MByte/s] STAT	22630.098	2140.052	2364.685	2263.0098
Memory data volume [GByte] STAT	16.919217152	1.690376128	1.69339104	1.6919217152
Memory bandwidth [MByte/s] STAT	41770.861	4173.27	4180.714	4177.0861
+--------------------------------------+--------------+-------------+-------------+--------------+

likwid-perfctr -g NUMA –C M0:0-4@M1:0-4 ./a.out

About half of the overall
memory traffic is caused by
remote domain!

53

A weird observation

(c) RRZE 2019 ccNUMA

Lo
ng

er
ru

nt
im

e

 Experiment: memory-bound Jacobi solver with sequential data
initialization
 No parallel data placement at all!
 Expect no scaling across LDs

 Convergence threshold 𝛿𝛿
determines the runtime
 The smaller 𝛿𝛿, the longer the run

 Observation
 No scaling across LDs for large 𝛿𝛿

(runtime 0.5 s)
 Scaling gets better with smaller 𝛿𝛿

up to almost perfect efficiency 𝜀𝜀
(runtime 91 s)

 Conclusion
 Something seems to “heal” the bad

access locality on a time scale of tens of seconds

54

Riddle solved: NUMA balancing
 Linux kernel supports automatic page migration

$ cat /proc/sys/kernel/numa_balancing
0
$ echo 1 > /proc/sys/kernel/numa_balancing # activate

 Active on all current Linux distributions
 Parameters control aggressiveness

 Deafult behavior is “take it slow”
 Do not rely on it! Parallel first touch is still a good idea!

(c) RRZE 2019 ccNUMA

$ ll /proc/sys/kernel/numa*
-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing
-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_delay_ms
-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_period_max_ms
-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_period_min_ms
-rw-r--r-- 1 root root 0 Jun 26 09:16 numa_balancing_scan_size_mb

55

The curse and blessing of interleaved placement:
OpenMP STREAM triad on a dual AMD Epyc 7451 (6 cores per LD)

 Parallel init: Correct parallel initialization
 LD0: Force data into LD0 via numactl –m 0
 Interleaved: numactl --interleave <LD range>

(c) RRZE 2019 ccNUMA

58

Summary on ccNUMA issues

 Identify the problem
 Is ccNUMA an issue in your code?
 Simple test: run with numactl --interleave

 Apply first-touch placement
 Look at initialization loops
 Consider loop lengths and static scheduling
 C++ and global/static objects may require special care

 NUMA balancing is active on many Linux systems today
 Automatic page migration
 Slow process, may take many seconds (configurable)
 Not a silver bullet
 Still a good idea to do parallel first touch

 If dynamic scheduling cannot be avoided
 Consider round-robin placement as a quick (but non-ideal) fix
 OpenMP 5.0 will have some data affinity support

(c) RRZE 2019 ccNUMA

Simultaneous multithreading (SMT)

Principles and performance impact
SMT vs. independent instruction streams
Facts and fiction

60(c) RRZE 2019 SMT

SMT Makes a single physical core appear as two or more
“logical” cores  multiple threads/processes run concurrently

 SMT principle (2-way example):

St
an

da
rd

 c
or

e
2-

w
ay

 S
M

T

61(c) RRZE 2019 SMT

SMT impact
 SMT is primarily suited for increasing processor throughput

 With multiple threads/processes running concurrently
 Scientific codes tend to utilize chip resources quite well

 Standard optimizations (loop fusion, blocking, …)
 High data and instruction-level parallelism
 Exceptions do exist

 SMT is an important topology issue
 SMT threads share almost all core

resources
 Pipelines, caches, data paths

 Affinity matters!
 If SMT is not needed

 pin threads to physical cores
 or switch it off via BIOS etc.

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

62(c) RRZE 2019 SMT

SMT impact
 Caveat: SMT threads share all caches!

 Possible benefit: Better pipeline throughput
 Filling otherwise unused pipelines
 Filling pipeline bubbles with other thread’s executing instructions:

 Beware: Executing it all in a single thread
(if possible) may reach the same goal
without SMT:

Thread 0:
do i=1,N

a(i) = a(i-1)*c
enddo

Dependency  pipeline
stalls until previous MULT is

over

C
C

C
C

C
C

C
C

C
C

C
C

C

MI

Memory

P
T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1
P

T0

T1

Thread 1:
do i=1,N
b(i) = s*b(i-2)+d

enddo

Unrelated work in other
thread can fill the pipeline

bubbles

do i=1,N
a(i) = a(i-1)*c
b(i) = s*b(i-2)+d

enddo

63

The ideal workload for SMT
Simple loop-carried dependency benchmark A(i) = s*A(i-1)

 Bottleneck: MULT pipeline latency
 Haswell CPU: 5 cy/it best case

 Running 2 threads via SMT: expect 2.5 cy/it if
no other bottlenecks turn up

 Further improvement?
 Multiple independent streams of instructions

per thread

 What about the data transfer?

(c) RRZE 2019 SMT

a(2)*c

Thread 0:
do i=1,N
a(i)=a(i-1)*c
enddo

a(2)*c

a(7)*c

Thread 0:
do i=1,N
a(i)=a(i-1)*c
enddo

Thread 1:
do i=1,N
a(i)=a(i-1)*c
enddo

B(7)*d

A(2)*c

A(7)*d

B(2)*c

Thread 0:
do i=1,N
A(i)=A(i-1)*c
B(i)=B(i-1)*d
enddo

Thread 1:
do i=1,N
A(i)=A(i-1)*c
B(i)=B(i-1)*d
enddo

M
U

LT
 p

ip
e

64

The ideal workload for SMT
Simple loop-carried dependency benchmark A(i) = s*A(i-1)

 Bottleneck: MULT pipeline
latency

 Performance
insensitive to
problem size
w/o SMT

 Fill bubbles via
 SMT
 Multiple indep.

streams

(c) RRZE 2019 SMT

Intel Xeon “Haswell” E5-2695v3, 2.3GHz

65

SMT myths: Facts and fiction (1)
Myth: “If the code is compute-bound, then the functional units should
be saturated and SMT should show no improvement.”

Truth
1. A compute-bound loop does not

necessarily saturate the pipelines;
dependencies can cause a lot of bubbles,
which may be filled by SMT threads.

2. If a pipeline is already full, SMT will not improve its
utilization

(c) RRZE 2019 SMT

B(7)*d

A(2)*c

A(7)*d

B(2)*c

Thread 0:
do i=1,N
A(i)=A(i-1)*c
B(i)=B(i-1)*d
enddo

Thread 1:
do i=1,N
A(i)=A(i-1)*c
B(i)=B(i-1)*d
enddo

M
U

LT
 p

ip
e

66

SMT myths: Facts and fiction (2)
Myth: “If the code is memory-bound, SMT should help because it can fill
the bubbles left by waiting for data from memory.”
Truth:

1. If the maximum memory bandwidth is already reached, SMT will not help
since the relevant
resource (bandwidth)
is exhausted.

2. If the relevant
bottleneck is not
exhausted, SMT may
help since it can fill
bubbles in the LOAD
pipeline.

This applies also to other
“relevant bottlenecks!”

(c) RRZE 2019 SMT

67

SMT myths: Facts and fiction (3)
Myth: “SMT can help bridge the latency to
memory (more outstanding references).”

Truth:
Outstanding references may or may not be bound to
SMT threads; they may be a resource of the memory
interface and shared by all threads. The benefit of
SMT with memory-bound code is usually due to better
utilization of the pipelines so that less time gets
“wasted” in the cache hierarchy.

See also the “ECM Performance Model”
later on.

(c) RRZE 2019 SMT

	Single Instruction Multiple Data (SIMD) processing
	SIMD terminology
	Scalar execution units
	Data-parallel execution units (short vector SIMD)�Single Instruction Multiple Data (SIMD)
	Example: Data types in 32-byte SIMD registers (AVX[2])
	In-core features are driving peak performance
	Von Neumann bottleneck reloaded: “DRAM gap”
	SIMD
	SIMD processing – Basics
	SIMD processing: roadblocks
	How to leverage SIMD: your options
	Vectorization compiler options (Intel)
	User-mandated vectorization (OpenMP 4)
	x86 Architecture:�SIMD and Alignment
	SIMD
	Assembler: Why and how?
	Basics of the x86-64 ISA
	Basics of the x86-64 ISA with extensions
	Example for masked execution
	ISA support on Intel chips
	Case Study: Sum reduction (double precision)
	Sum reduction (double precision) – AVX512 version
	Sum reduction (double precision) – sequential performance
	SIMD with masking
	Rules and guidelines for vectorizable loops
	Efficient parallel programming �on ccNUMA nodes
	ccNUMA performance problems�“The other affinity” to care about
	How much bandwidth does nonlocal access cost?
	numactl as a simple ccNUMA locality tool :�How do we enforce some locality of access?
	ccNUMA default memory locality
	Coding for ccNUMA data locality
	Coding for ccNUMA data locality
	Coding for Data Locality
	Diagnosing bad locality
	Using performance counters for diagnosing bad ccNUMA access locality
	A weird observation
	Riddle solved: NUMA balancing
	The curse and blessing of interleaved placement: �OpenMP STREAM triad on a dual AMD Epyc 7451 (6 cores per LD)
	Summary on ccNUMA issues
	Simultaneous multithreading (SMT)
	SMT Makes a single physical core appear as two or more “logical” cores  multiple threads/processes run concurrently
	SMT impact
	SMT impact
	The ideal workload for SMT
	The ideal workload for SMT
	SMT myths: Facts and fiction (1)
	SMT myths: Facts and fiction (2)
	SMT myths: Facts and fiction (3)

