Understanding Parallelism and the Limitations of Parallel Computing
Understanding Parallelism:

Sequential work

After 16 time steps: 4 cars

(c) RRZE 2013
Understanding Parallelism:
Parallel work

After 4 time steps: 4 cars

“perfect speedup”
Understanding parallelism:

Shared resources, imbalance

- Unused resources due to resource bottleneck and imbalance!
- Waiting for synchronization
- Waiting for shared resource
Limitations of Parallel Computing: Amdahl's Law

Ideal world: All work is perfectly parallelizable

Closer to reality: Purely serial parts limit maximum speedup

Reality is even worse: Communication and synchronization impede scalability even further
Limitations of Parallel Computing:
Calculating Speedup in a Simple Model ("strong scaling")

\[T(1) = s + p \] = serial compute time (=1)

parallelizable part: \(p = 1 - s \)

purely serial part \(s \)

Parallel execution time:
\[T(N) = s + \frac{p}{N} \]

General formula for speedup:
Amdahl's Law (1967)
"strong scaling"

\[S^k_p = \frac{T(1)}{T(N)} = \frac{1}{s + \frac{1-s}{N}} \]
Limitations of Parallel Computing:

Amdahl's Law ("strong scaling")

- **Reality:** No task is perfectly parallelizable
 - Shared resources have to be used serially
 - Task interdependencies must be accounted for
 - Communication overhead (but that can be modeled separately)

- **Benefit of parallelization may be strongly limited**
 - "Side effect": limited scalability leads to inefficient use of resources
 - **Metric: Parallel Efficiency**
 (what percentage of the workers/processors is efficiently used):

\[\varepsilon_p(N) = \frac{S_p(N)}{N} \]

- **Amdahl case:**

\[\varepsilon_p = \frac{1}{s(N-1)+1} \]
Limitations of Parallel Computing:

Adding a *simple communication model for strong scaling*

- **Serial compute time:**
 \[T(1) = s + p = \text{serial compute time} \]

- **Parallel part:**
 \[p = 1 - s \]

- **Parallel time:**
 \[T(N) = s + \frac{p}{N} + Nk \]

General formula for speedup:

\[
S^k_p = \frac{T(1)}{T(N)} = \frac{1}{s + \frac{1-s}{N} + Nk}
\]

(c) RRZE 2013
Limitations of Parallel Computing:

Amdahl's Law ("strong scaling")

- Large N limits
 - at $k=0$, Amdahl's Law predicts
 \[
 \lim_{N \to \infty} S_p^0(N) = \frac{1}{s}
 \]
 independent of N!

- at $k \neq 0$, our simple model of communication overhead yields a behaviour of
 \[
 S_p^k(N) \xrightarrow{N \gg 1} \frac{1}{Nk}
 \]

- Problems in real world programming
 - Load imbalance
 - Shared resources have to be used serially (e.g. IO)
 - Task interdependencies must be accounted for
 - Communication overhead

(c) RRZE 2013
Limitations of Parallel Computing:

Amdahl’s Law ("strong scaling") + comm. model

Scalability Laws

(c) RRZE 2013
Limitations of Parallel Computing:

Amdahl’s Law ("strong scaling")

Parallel efficiency:

- <10%
- ~50%

Graph Details

- **S(N)** vs. **# CPUs**
- **s=0.01**
- **s=0.1**
- **s=0.1, k=0.05**

(c) RRZE 2013
Limitations of Parallel Computing:
How to mitigate overheads

- Communication is not necessarily purely serial
 - Non-blocking crossbar networks can transfer many messages concurrently – factor Nk in denominator becomes k (technical measure)
 - Sometimes, communication can be overlapped with useful work (implementation, algorithm):
 - Communication overhead may show a more fortunate behavior than Nk
 - "superlinear speedups": data size per CPU decreases with increasing CPU count \rightarrow may fit into cache at large CPU counts

(c) RRZE 2013
Serial fraction s may depend on

- **Program / algorithm**
 - Non-parallelizable part, e.g. recursive data setup
 - Non-parallelizable IO, e.g. reading input data
 - Communication structure
 - Load balancing (assumed so far: perfect balanced)
 - …

- **Computer hardware**
 - Processor: Cache effects & memory bandwidth effects
 - Parallel Library; Network capabilities; Parallel IO
 - …

Determine s "experimentally":
Measure speedup and fit data to Amdahl’s law – but that could be more complicated than it seems…
Scalability data on modern multi-core systems

An example

1→2 cores on socket

1→2 sockets on node

Scaling across nodes

Chipset

Memory
Scalability data on modern multi-core systems

The scaling baseline

- Scalability presentations should be grouped according to the largest unit that the scaling is based on (the “scaling baseline”)

- Amdahl model with communication: Fit

 \[
 S(N) = \frac{1}{s + \frac{1-s}{N} + kN}
 \]

 to inter-node scalability numbers

 \(N = \# \text{ nodes, } >1\)
Application to “accelerated computing”

- SIMD, GPUs, Cell SPEs, FPGAs, just any optimization…
- Assume overall (serial, un-accelerated) runtime to be $T_s = s + p = 1$
- Assume p can be accelerated and run α times faster. We neglect any additional cost (communication…)
- To get a speedup of $r\alpha$, how small must s be? Solve for s:

$$r\alpha = \frac{1}{s + \frac{1-s}{\alpha}} \Rightarrow s = \frac{r^{-1} - 1}{\alpha - 1}$$

- At $\alpha=10$ and $r=0.9$ (for an overall speedup of 9), we get $s \approx 0.012$, i.e. you must accelerate 98.8% of serial runtime!
- Limited memory on accelerators may limit the achievable speedup